General and Local: Averaged k-Dependence Bayesian Classifiers

نویسندگان

  • Limin Wang
  • Haoyu Zhao
  • Minghui Sun
  • Yue Ning
چکیده

The inference of a general Bayesian network has been shown to be an NP-hard problem, even for approximate solutions. Although k-dependence Bayesian (KDB) classifier can construct at arbitrary points (values of k) along the attribute dependence spectrum, it cannot identify the changes of interdependencies when attributes take different values. Local KDB, which learns in the framework of KDB, is proposed in this study to describe the local dependencies implicated in each test instance. Based on the analysis of functional dependencies, substitution-elimination resolution, a new type of semi-naive Bayesian operation, is proposed to substitute or eliminate generalization to achieve accurate estimation of conditional probability distribution while reducing computational complexity. The final classifier, averaged k-dependence Bayesian (AKDB) classifiers, will average the output of KDB and local KDB. Experimental results on the repository of machine learning databases from the University of California Irvine (UCI) showed that AKDB has significant advantages in zero-one loss and bias relative to naive Bayes (NB), tree augmented naive Bayes (TAN), Averaged one-dependence estimators (AODE), and KDB. Moreover, KDB and local KDB show mutually complementary characteristics with respect to variance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Domains of competence of the semi-naive Bayesian network classifiers

The motivation for this paper comes from observing the recent tendency to assert that rather than a unique and globally superior classifier, there exist local winners. Hence, the proposal of new classifiers can be seen as an attempt to cover new areas of the complexity space of datasets, or even to compete with those previously assigned to others. Several complexity measures for supervised clas...

متن کامل

Diagnosis of Tempromandibular Disorders Using Local Binary Patterns

Background: Temporomandibular joint disorder (TMD) might be manifested as structural changes in bone through modification, adaptation or direct destruction. We propose to use Local Binary Pattern (LBP) characteristics and histogram-oriented gradients on the recorded images as a diagnostic tool in TMD assessment.Material and Methods: CBCT images of 66 patients (132 joints) with TMD and 66 normal...

متن کامل

Attribute Value Weighted Average of One-Dependence Estimators

Of numerous proposals to improve the accuracy of naive Bayes by weakening its attribute independence assumption, semi-naive Bayesian classifiers which utilize one-dependence estimators (ODEs) have been shown to be able to approximate the ground-truth attribute dependencies; meanwhile, the probability estimation in ODEs is effective, thus leading to excellent performance. In previous studies, OD...

متن کامل

Non-Disjoint Discretization for Aggregating One-Dependence Estimator Classifiers

There is still lack of clarity about the best manner in which to handle numeric attributes when applying Bayesian network classifiers. Discretization methods entail an unavoidable loss of information. Nonetheless, a number of studies have shown that appropriate discretization can outperform straightforward use of common, but often unrealistic parametric distribution (e.g. Gaussian). Previous st...

متن کامل

Learning a Flexible K-Dependence Bayesian Classifier from the Chain Rule of Joint Probability Distribution

As one of the most common types of graphical models, the Bayesian classifier has become an extremely popular approach to dealing with uncertainty and complexity. The scoring functions once proposed and widely used for a Bayesian network are not appropriate for a Bayesian classifier, in which class variable C is considered as a distinguished one. In this paper, we aim to clarify the working mech...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2015